AOR

The Archives of Ophthalmological Research aims to publish issues related to publish articles of the highest scientific and clinical value at an international level, and accepts articles on these topics. The target audience of the journal included specialists and physicians working in ophthalmology, and other health professionals interested in these fields.

EndNote Style
Index
Review
Current diagnosis and screening of hydroxychloroquine retinopathy
Hydroxychloroquine-associated retinopathy is an important cause of progressive visual loss that is increasingly being diagnosed with the growing use of hydroxychloroquine and modern imaging techniques. Hydroxychloroquine acts through complex mechanisms and is commonly used to treat rheumatological and dermatological diseases. Optical coherence tomography, fundus autofluorescence, and automated perimetry are commonly used in retinal clinics for the diagnosis and monitoring of hydroxychloroquine-associated retinopathy. Owing to the potential for irreversible central visual loss with the development of retinopathy, early detection of toxicity is crucial. Advances in technology, wide-field imaging devices, new optical coherence tomography techniques and parameters, fundus autofluorescence techniques, and imaging methods such as optical coherence tomography angiography offer promise for the early detection of toxicity.


1. Scherbel AL, Mackenzie AH, Nousek JE, Atdjian M. Ocular lesions inrheumatoid arthritis and related disorders with particular referenceto retinopathy. A study of 741 patients treated with and withoutchloroquine drugs. N Engl J Med. 1965;273(7):360-366. doi: 10.1056/nejm196508122730704
2. Yates M, Malaiya R, Stack J, Galloway JB. Hydroxychloroquine use:the potential impact of new ocular screening guidelines. Eye (Lond).2018;32(1):161-162. doi: 10.1038/eye.2017.166
3. Alarcón GS, McGwin G, Bertoli AM, et al. Effect of hydroxychloroquineon the survival of patients with systemic lupus erythematosus: datafrom LUMINA, a multiethnic US cohort (LUMINA L). Ann Rheum Dis.2007;66(9):1168-1172. doi: 10.1136/ard.2006.068676
4. Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol.2012;74:69-86. doi: 10.1146/annurev-physiol-012110-142317
5. Pham BH, Marmor MF. Sequential changes in hydroxychloroquineretinopathy up to 20 years after stopping the drug: implications formild versus severe toxicity. Retina. 2019;39(3):492-501. doi: 10.1097/IAE.0000000000002408
6. Schroeder RL, Gerber JP. Chloroquine and hydroxychloroquinebinding to melanin: Some possible consequences for pathologies.Toxicol Rep. 2014;1:963-968. doi: 10.1016/j.toxrep.2014.10.019
7. Morsman CD, Livesey SJ, Richards IM, Jessop JD, Mills PV. Screeningfor hydroxychloroquine retinal toxicity: is it necessary? Eye (Lond).1990;4(Pt 4):572-576. doi: 10.1038/eye.1990.79
8. Melles RB, Marmor MF. The risk of toxic retinopathy in patientson long-term hydroxychloroquine therapy. JAMA Ophthalmol.2014;132(12):1453-1460. doi: 10.1001/jamaophthalmol.2014.3459
9. Yusuf IH, Issa PC, Ahn SJ. Hydroxychloroquine-induced retinaltoxicity. Front Pharmacol. 2023;14. doi: 10.3389/FPHAR.2023.1196783
10. Chiu HI, Cheng HC, Wu CC, et al. Exome sequencing and genome-wide association analyses unveils the genetic predisposition inhydroxychloroquine retinopathy. Eye (Lond). doi: 10.1038/s41433-024-03044-x
11. Trefond L, Lhote R, Mathian A, et al. Identification of new risk factorsfor hydroxychloroquine and chloroquine retinopathy in systemic lupuserythematosus patients. Semin Arthritis Rheum. 2024;66:152417. doi:10.1016/j.semarthrit.2024.152417
12. Melles RB, Marmor MF. Pericentral retinopathy and racial differencesin hydroxychloroquine toxicity. Ophthalmology. 2015;122(1):110-116.doi: 10.1016/j.ophtha.2014.07.018
13. Marmor MF. Comparison of screening procedures inhydroxychloroquine toxicity. Arch Ophthalmol. 2012;130(4):461-469.doi: 10.1001/archophthalmol.2011.371
14. Marshall E, Robertson M, Kam S, Penwarden A, Riga P, DaviesN. Prevalence of hydroxychloroquine retinopathy using 2018Royal College of Ophthalmologists diagnostic criteria. Eye (Lond).2021;35(1):343-348. doi: 10.1038/s41433-020-1038-2
15. Anderson C, Blaha GR, Marx JL. Humphrey visual field findings inhydroxychloroquine toxicity. Eye (Lond). 2011;25(12):1535-1545. doi:10.1038/eye.2011.245
16. Pfau M, Jolly JK, Wu Z, et al. Fundus-controlled perimetry(microperimetry): application as outcome measure in clinical trials. ProgRetin Eye Res. 2021;82:100907. doi: 10.1016/j.preteyeres.2020.100907
17. Rohrschneider K, Bültmann S, Springer C. Use of fundus perimetry(microperimetry) to quantify macular sensitivity. Prog Retin Eye Res.2008;27(5):536-548. doi: 10.1016/j.preteyeres.2008.07.003
18. Lai TYY, Ngai JWS, Chan WM, Lam DSC. Visual field andmultifocal electroretinography and their correlations in patients onhydroxychloroquine therapy. Doc Ophthalmol. 2006;112(3):177-187.doi: 10.1007/s10633-006-9006-0
19. Tsang AC, Ahmadi Pirshahid S, Virgili G, Gottlieb CC, Hamilton J,Coupland SG. Hydroxychloroquine and chloroquine retinopathy: asystematic review evaluating the multifocal electroretinogram as ascreening test. Ophthalmology. 2015;122(6):1239-1251.e4. doi: 10.1016/j.ophtha.2015.02.011
20. Omri S, Omri B, Savoldelli M, et al. The outer limiting membrane(OLM) revisited: clinical implications. Clin Ophthalmol. 2010;4:183-195. doi: 10.2147/opth.s5901
21. Chen E, Brown DM, Benz MS, et al. Spectral domain optical coherencetomography as an effective screening test for hydroxychloroquineretinopathy (the "flying saucer" sign). Clin Ophthalmol.2010;4:1151-1158. doi: 10.2147/OPTH.S14257
22. Rodriguez-Padilla JA, Hedges TR, Monson B, et al. High-speedultra-high-resolution optical coherence tomography findings inhydroxychloroquine retinopathy. Arch Ophthalmol. 2007;125(6):775-780. doi: 10.1001/archopht.125.6.775
23. Kellner S, Weinitz S, Farmand G, Kellner U. Cystoid macular oedemaand epiretinal membrane formation during progression of chloroquineretinopathy after drug cessation. Br J Ophthalmol. 2014;98(2):200-206.doi: 10.1136/bjophthalmol-2013-303897
24. Kellner U, Renner AB, Tillack H. Fundus autofluorescence and mfERGfor early detection of retinal alterations in patients using chloroquine/hydroxychloroquine. Invest Ophthalmol Vis Sci. 2006;47(8):3531-3538.doi: 10.1167/iovs.05-1290
25. Cukras C, Huynh N, Vitale S, Wong WT, Ferris FL, Sieving PA.Subjective and objective screening tests for hydroxychloroquinetoxicity.Ophthalmology. 2015;122(2):356-366. doi: 10.1016/j.ophtha.2014.07.056
26. Kim KE, Ahn SJ, Woo SJ, et al. Use of OCT retinal thickness deviationmap for hydroxychloroquine retinopathy screening. Ophthalmology.2021;128(1):110-119. doi: 10.1016/j.ophtha.2020.06.021
27. Gil P, Nunes A, Farinha C, Teixeira D, Pires I, Silva R. Structural andfunctional characterization of the retinal effects of hydroxychloroquinetreatment in healthy eyes. Ophthalmologica. 2019;241(4):226-233. doi:10.1159/000495308
28. Casado A, López-de-Eguileta A, Fonseca S, et al. Outer nuclear layerdamage for detection of early retinal toxicity of hydroxychloroquine.Biomedicines. 2020;8(3). doi: 10.3390/biomedicines8030054
29. Melles RB, Marmor MF. Rapid macular thinning is an early ındicator ofhydroxychloroquine retinal toxicity. Ophthalmology. 2022;129(9):1004-1013. doi: 10.1016/j.ophtha.2022.05.002
30. Ahn SJ, Ryu SJ, Joung JY, Lee BR. Choroidal thinning associated withhydroxychloroquine retinopathy. Am J Ophthalmol. 2017;183:56-64.doi: 10.1016/j.ajo.2017.08.022
31. Polat OA, Okçu M, Yılmaz M. Hydroxychloroquine treatmentalters retinal layers and choroid without apparent toxicity in opticalcoherence tomography. Photodiagnosis Photodyn Ther. 2022;38:102806.doi: 10.1016/j.pdpdt.2022.102806
32. Lee DH, Melles RB, Joe SG, et al. Pericentral hydroxychloroquineretinopathy in Korean patients. Ophthalmology. 2015;122(6):1252-1256.doi: 10.1016/j.ophtha.2015.01.014
33. Leitgeb RA. En face optical coherence tomography: a technology review[Invited]. Biomed Opt Express. 2019;10(5):2177-2201. doi:10.1364/BOE.10.002177
34. Ahn SJ, Joung J, Lee BR. En face optical coherence tomography ımagingof the photoreceptor layers in hydroxychloroquine retinopathy. Am JOphthalmol. 2019;199:71-81. doi: 10.1016/j.ajo.2018.11.003
35. Greenberg JP, Duncker T, Woods RL, Smith RT, Sparrow JR, DeloriFC. Quantitative fundus autofluorescence in healthy eyes. InvestOphthalmol Vis Sci. 2013;54(8):5684-5693. doi: 10.1167/iovs.13-12445
36. Reichel C, Berlin A, Radun V, et al. Quantitative fundusautofluorescence in systemic chloroquine/hydroxychloroquine therapy.Transl Vis Sci Technol. 2020;9(9):42. doi: 10.1167/tvst.9.9.42
37. Greenstein VC, Lima de Carvalho JR, Parmann R, et al. Quantitativefundus autofluorescence in HCQ retinopathy. Invest Ophthalmol VisSci. 2020;61(11):41. doi: 10.1167/iovs.61.11.41
38. Abdolrahimzadeh S, Ciancimino C, Grassi F, Sordi E, Fragiotta S,Scuderi G. Near-infrared reflectance imaging in retinal diseasesaffecting young patients. J Ophthalmol. 2021;2021:5581851. doi:10.1155/2021/5581851
39. Kellner S, Weinitz S, Kellner U. Spectral domain optical coherencetomography detects early stages of chloroquine retinopathy similarto multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. Br J Ophthalmol. 2009;93(11):1444-1447. doi:10.1136/bjo.2008.157198
40. Akhlaghi M, Kianersi F, Radmehr H, Dehghani A, Naderi BeniA, Noorshargh P. Evaluation of optical coherence tomographyangiography parameters in patients treated with Hydroxychloroquine.BMC Ophthalmol. 2021;21(1):209. doi: 10.1186/s12886-021-01977-5
41. Esser EL, Zimmermann JA, Storp JJ, Eter N, Mihailovic N. Retinalmicrovascular density analysis in patients with rheumatoid arthritistreated with hydroxychloroquine. Graefes Arch Clin Exp Ophthalmol.2023;261(5):1433-1442. doi: 10.1007/s00417-022-05946-6
42. Marmor MF, Kellner U, Lai TYY, Melles RB, Mieler WF. AmericanAcademy of Ophthalmology. Recommendations on screeningfor chloroquine and hydroxychloroquine retinopathy (2016Revision). Ophthalmology. 2016;123(6):1386-1394. doi: 10.1016/j.ophtha.2016.01.058
43. Yusuf IH, Foot B, Lotery AJ. The Royal College of Ophthalmologistsrecommendations on monitoring for hydroxychloroquine andchloroquine users in the United Kingdom (2020 revision): executivesummary. Eye (Lond). 2021;35(6):1532-1537. doi: 10.1038/s41433-020-01380-2
Volume 1, Issue 3, 2024
Page : 46-49
_Footer