AOR

The Archives of Ophthalmological Research aims to publish issues related to publish articles of the highest scientific and clinical value at an international level, and accepts articles on these topics. The target audience of the journal included specialists and physicians working in ophthalmology, and other health professionals interested in these fields.

EndNote Style
Index
Review
Gene therapy applications in ophthalmology
Gene therapy has gained significant progress in recent years. The success of these therapies is based on efficient gene transfer and stable transgene expression. With the US Food and Drug Administration’s (FDA) approval of gene therapy for Leber congenital amaurosis (LCA), the use of gene therapies has increased. Studies have provided new information about the benefits and limitations of using gene transfer routes to different regions of the eye. However, there are many old and new difficulties in the long-term effects, immunogenicity, targeting, and production of treatments. The eye’s susceptibility to inflammation and immune and inflammatory reactions encountered in gene therapy can render the treatment ineffective or harmful. Although many strategies have some requirements in common, it is not possible for a single gene therapy system to be used for all applications. Moreover, genome-engineering tools based on new delivery methods facilitate more effective and targeted applications to eye compartments. This review presents data on various approaches to gene therapy, their applications to various eye diseases from the anterior segment to the posterior segment, clinical limitations of current systems, future prospects, research aimed at alternative solutions, and advantages and disadvantages of gene transfer routes.


1. Choi EH, Suh S, Sears AE, et al. Genome editing in the treatment of ocular diseases. Exp Mol Med. 2023;55(8):1678-1690. doi:10.1038/s12276-023-01057-2
2. Suh S, Choi EH, Raguram A, Liu DR, Palczewski K. Precision genome editing in the eye. Proc Natl Acad Sci. 2022;119(39):e2210104119. doi:10. 1073/pnas.2210104119
3. Tang R, Xu Z. Gene therapy: a double-edged sword with great powers. Mol Cell Biochem. 2020;474(1-2):73-81. doi:10.1007/s11010-020-03834-3
4. Berkowitz ST, Finn AP. Gene therapy for age-related macular degeneration: potential, feasibility, and pitfalls. Curr Opin Ophthalmol. 2024;35(3):170-177. doi:10.1097/ICU.0000000000001043
5. Li B, Tan W, Wang Z, et al. Progress and prospects of gene therapy in ophthalmology from 2000 to 2022: a bibliometric analysis. Heliyon. 2023;9(7):e18228. doi:10.1016/j.heliyon.2023.e18228
6. Hu ML, Edwards TL, O’Hare F, et al. Gene therapy for inherited retinal diseases: progress and possibilities. Clin Exp Optom. 2021;104(4):444-454. doi:10.1080/08164622.2021.1880863
7. Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res. 2023;93:101170. doi:10.1016/j.preteyeres.2023.101170
8. Sudhakar V, Richardson RM. Gene therapy for neurodegenerative diseases. Neurotherapeutics. 2019;16(1):166-175. doi:10.1007/s13311-018-00694-0
9. Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent advances in gene therapy for cardiac tissue regeneration. Int J Mol Sci. 2021;22(17):9206. doi:10.3390/ijms22179206
10. Sinim Kahraman N, Öner A, Özkul Y, Dündar M. Frequency of RPE65 gene mutation in patients with hereditary retinal dystrophy. Turk J Ophthalmol. 2022;52(4):270-275. doi:10.4274/tjo.galenos.2021.74944
11. Sahu B, Chug I, Khanna H. The ocular gene delivery landscape. Biomolecules. 2021;11(8):1135. doi:10.3390/biom11081135
12. Ghoraba HH, Akhavanrezayat A, Karaca I, et al. Ocular gene therapy: a literature review with special focus on immune and inflammatory responses. Clin Ophthalmol. 2022;16:1753-1771. doi:10.2147/OPTH.S364200
13. Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25(2):229-233. doi:10.1038/s41591-018-0327-9
14. Drag S, Dotiwala F, Upadhyay AK. Gene Therapy for retinal degenerative diseases: progress, challenges, and future directions. Investig Opthalmology Vis Sci. 2023;64(7):39. doi:10.1167/iovs.64.7.39
15. Zhi S, Chen Y, Wu G, et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Ther. 2022;30(1):283-294. doi:10. 1016/j.ymthe.2021.07.011
16. Öner A. Recent advancements in gene therapy for hereditary retinal dystrophies. Turk Oftalmol Derg. 2017;47(6):338-343. doi:10.4274/tjo. 41017
17. Altay HY, Ozdemir F, Afghah F, et al. Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: from proof-of-concept to clinical trial. Front Neurosci. 2022;16:924917. doi:10.3389/fnins.2022.924917
18. Maguire AM, Russell S, Chung DC, et al. Durability of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease. Ophthalmology. 2021;128(10):1460-1468. doi:10.1016/j.ophtha.2021.03. 031
19. Reichel FF, Seitz I, Wozar F, et al. Development of retinal atrophy after subretinal gene therapy with voretigene neparvovec. Br J Ophthalmol. 2023;107(9):1331-1335. doi:10.1136/bjophthalmol-2021-321023
20. Lorenz B, Künzel SH, Preising MN, et al. Single center experience with voretigene neparvovec gene augmentation therapy in RPE65 mutation-associated ınherited retinal degeneration in a clinical setting. Ophthalmology. 2024;131(2):161-178. doi:10.1016/j.ophtha.2023.09.006
21. Daruich A, Rateaux M, Batté E, et al. 12-month outcomes after voretigene neparvovec gene therapy in paediatric patients with RPE65 -mediated inherited retinal dystrophy. Br J Ophthalmol. 2025;109(2):281-285. doi: 10.1136/bjo-2024-326221
22. Fischer MD, Simonelli F, Sahni J, et al. Real-world safety and effectiveness of voretigene neparvovec: results up to 2 years from the prospective, registry-based PERCEIVE study. Biomolecules. 2024;14(1): 122. doi:10.3390/biom14010122
23. Yang P, Pardon LP, Ho AC, et al. Safety and efficacy of ATSN-101 in patients with Leber congenital amaurosis caused by biallelic mutations in GUCY2D: a phase 1/2, multicentre, open-label, unilateral dose escalation study. Lancet. 2024;404(10456):962-970. doi:10.1016/S0140-6736(24)01447-8
24. Audo I, Barale PO, Devisme C, et al. Voretigene neparvovec in RPE65-related inherited retinal dystrophy: the 1-year real-world study LIGHT. Eye. 2025;39(9):1758-1764. doi:10.1038/s41433-025-03691-8
25. Oliveira AV, Rosa Da Costa AM, Silva GA. Non-viral strategies for ocular gene delivery. Mater Sci Eng C. 2017;77:1275-1289. doi:10.1016/j.msec.2017.04.068
26. Zhu G, Chen X. Aptamer-based targeted therapy. Adv Drug Deliv Rev. 2018;134:65-78. doi:10.1016/j.addr.2018.08.005
27. Nimjee SM, White RR, Becker RC, Sullenger BA. Aptamers as therapeutics. Annu Rev Pharmacol Toxicol. 2017;57(1):61-79. doi:10.1146/annurev-pharmtox-010716-104558
28. Xue K, MacLaren RE. Antisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases. Expert Opin Investig Drugs. 2020;29(10):1163-1170. doi:10.1080/13543784.2020.1804853
29. Bacchi N, Casarosa S, Denti MA. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter. Investig Opthalmology Vis Sci. 2014;55(5):3285. doi:10.1167/iovs.14-14544
30. Collin RWJ, Garanto A. Applications of antisense oligonucleotides for the treatment of inherited retinal diseases. Curr Opin Ophthalmol. 2017;28(3):260-266. doi:10.1097/ICU.0000000000000363
31. Girach A, Audo I, Birch DG, et al. RNA-based therapies in inherited retinal diseases. Ther Adv Ophthalmol. 2022;14:25158414221134602. doi:10.1177/25158414221134602
32. Dulla K, Slijkerman R, Van Diepen HC, et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol Ther. 2021;29(8):2441-2455. doi:10.1016/j.ymthe.2021.04. 024
33. Kuijper EC, Bergsma AJ, Pijnappel WWMP, Aartsma-Rus A. Opportunities and challenges for antisense oligonucleotide therapies. J Inherit Metab Dis. 2021;44(1):72-87. doi:10.1002/jimd.12251
34. Hutcherson SL LR. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with aids. Am J Ophthalmol. 2002; 133(4):467-474. doi:10.1016/S0002-9394(02)01327-2
35. Kumar S, Fry LE, Wang JH, et al. RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res. 2023;92:101110. doi:10.1016/j.preteyeres.2022.101110
36. Gérard X, Perrault I, Munnich A, Kaplan J, Rozet JM. Intravitreal injection of splice-switching oligonucleotides to manipulate splicing in retinal cells. Mol Ther Nucleic Acids. 2015;4:e250. doi:10.1038/mtna. 2015.24
37. Cideciyan AV, Jacobson SG, Drack AV, et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med. 2019;25(2):225-228. doi:10. 1038/s41591-018-0295-0
38. Slijkerman R, Van Diepen H, Albert S, et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by mutations in USH2A exon 13. 2020:10. doi:10.1101/2020.10.06.320499
39. Russell SR, Drack AV, Cideciyan AV, et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nat Med. 2022;28(5):1014-1021. doi:10.1038/s41591-022-01755-w
40. Jo DH, Song DW, Cho CS, et al. CRISPR-Cas9-mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis. Sci Adv. 2019;5(10):eaax1210. doi:10.1126/sciadv.aax1210
41. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849-860. doi:10.1016/S0140-6736 (17)31868-8
42. Verbakel SK, Van Huet RAC, Boon CJF, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157-186. doi:10.1016/j.preteyeres.2018.03.005
43. Liu Y, Zong X, Cao W, Zhang W, Zhang N, Yang N. Gene therapy for retinitis pigmentosa: current challenges and new progress. Biomolecules. 2024;14(8):903. doi:10.3390/biom14080903
44. Parnami K, Bhattacharyya A. Current approaches to vision restoration using optogenetic therapy. Front Cell Neurosci. 2023;17:1236826. doi:10. 3389/fncel.2023.1236826
45. Nakazawa M, Hara A, Ishiguro S. Optical coherence tomography of animal models of retinitis pigmentosa: from animal studies to clinical applications. BioMed Res Int. 2019;2019:1-16. doi:10.1155/2019/8276140
46. Bakondi B, Lv W, Lu B, et al. In Vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 Rat model of autosomal dominant retinitis pigmentosa. Mol Ther. 2016;24(3):556-563. doi:10.1038/mt.2015. 220
47. Giannelli SG, Luoni M, Castoldi V, et al. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet. 2018;27(5): 761-779. doi:10.1093/hmg/ddx438
48. Cai Y, Cheng T, Yao Y, et al. In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway. Sci Adv. 2019;5(4):eaav3335. doi:10.1126/sciadv.aav3335
49. Qin H, Zhang W, Zhang S, et al. Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J Exp Med. 2023;220(5): e20220776. doi:10.1084/jem.20220776
50. Gumerson JD, Alsufyani A, Yu W, et al. Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing. Gene Ther. 2022;29(1-2):81-93. doi:10.1038/s41434-021-00258-6
51. Piotter E, McClements ME, MacLaren RE. Therapy approaches for Stargardt disease. Biomolecules. 2021;11(8):1179. doi:10.3390/biom1108 1179
52. Al-Khuzaei S, Broadgate S, Foster CR, et al. An overview of the genetics of ABCA4 retinopathies, an evolving story. Genes. 2021;12(8):1241. doi: 10.3390/genes12081241
53. Sangermano R, Khan M, Cornelis SS, et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018;28(1):100-110. doi:10.1101/gr. 226621.117
54. De Angeli P, Reuter P, Hauser S, et al. Effective splicing restoration of a deep-intronic ABCA4 variant in cone photoreceptor precursor cells by CRISPR/SpCas9 approaches. Mol Ther Nucleic Acids. 2022;29:511-524. doi:10.1016/j.omtn.2022.07.023
55. Huang D, Thompson JA, Chen SC, et al. Characterising splicing defects of ABCA4 variants within exons 13-50 in patient-derived fibroblasts. Exp Eye Res. 2022;225:109276. doi:10.1016/j.exer.2022.109276
56. Kaltak M, Blanco-Garavito R, Molday LL, et al. Stargardt disease-associated in-frame ABCA4 exon 17 skipping results in significant ABCA4 function. J Transl Med. 2023;21(1):546. doi:10.1186/s12967-023-04406-x
57. Kaltak M, De Bruijn P, Piccolo D, et al. Antisense oligonucleotide therapy corrects splicing in the common Stargardt disease type 1-causing variant ABCA4 c.5461-10T>C. Mol Ther Nucleic Acids. 2023;31:674-688. doi:10.1016/j.omtn.2023.02.020
58. Kaltak M, De Bruijn P, Van Leeuwen W, et al. QR-1011 restores defective ABCA4 splicing caused by multiple severe ABCA4 variants underlying Stargardt disease. Sci Rep. 2024;14(1):684. doi:10.1038/s41598-024-51203-7
59. Li R, Jing Q, She K, et al. Split AAV8 mediated ABCA4 expression for gene therapy of mouse Stargardt disease (STGD1). Hum Gene Ther. 2023;34(13-14):616-628. doi:10.1089/hum.2023.017
60. Gabrielczyk T. SpliceBio lauches Phase I/II study on dual-AAV-based therapy for Stargardt Disease. Accessed March 20, 2025. https://european-biotechnology.com/latest-news/splicebio-lauches-phase-i-ii-study-on-dual-aav-based-therapy-for-stargardt-disease/#top
61. Shiels A, Hejtmancik JF. Inherited cataracts: genetic mechanisms and pathways new and old. Exp Eye Res. 2021;209:108662. doi:10.1016/j.exer.2021.108662
62. Ahmad R, Bell S, Moosajee M. Genetics of congenital cataract. Adv Ophthalmol Optom. 2022;7(1):89-118. doi:10.1016/j.yaoo.2022.03.004
63. Malecaze F, Lubsen NH, Serre B, et al. Lens cell targetting for gene therapy of prevention of posterior capsule opacification. Gene Ther. 2006;13(19):1422-1429. doi:10.1038/sj.gt.3302790
64. Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature. 2016;531(7594):323-328. doi:10.1038/nature17181
65. Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013;13(6):659-662. doi:10.1016/ j.stem.2013.10.016
66. Wu Y, Zhou H, Fan X, et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 2015;25(1):67-79. doi:10.1038/cr.2014.160
67. Yuan L, Sui T, Chen M, et al. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci Rep. 2016;6(1): 22024. doi:10.1038/srep22024
68. Yuan L, Yao H, Xu Y, et al. CRISPR/Cas9-Mediated Mutation of ?A-Crystallin gene induces congenital cataracts in rabbits. Investig Opthalmology Vis Sci. 2017;58(6):BIO34. doi:10.1167/iovs.16-21287
69. Zhao D, Jones JL, Gasperini RJ, Charlesworth JC, Liu GS, Burdon KP. Rapid and efficient cataract gene evaluation in F0 zebrafish using CRISPR-Cas9 ribonucleoprotein complexes. Methods. 2021;194:37-47. doi:10.1016/j.ymeth.2020.12.004
70. Jiang J, Zhang X, Tang Y, Li S, Chen J. Progress on ocular siRNA gene-silencing therapy and drug delivery systems. Fundam Clin Pharmacol. 2021;35(1):4-24. doi:10.1111/fcp.12561
71. Wu KY, Fujioka JK, Gholamian T, Zaharia M, Tran SD. Suprachoroidal injection: a novel approach for targeted drug delivery. Pharmaceuticals. 2023;16(9):1241. doi:10.3390/ph16091241
72. Huang P, Narendran S, Pereira F, et al. The learning curve of murine subretinal injection among clinically trained ophthalmic surgeons. Transl Vis Sci Technol. 2022;11(3):13. doi:10.1167/tvst.11.3.13
73. Awwad S, Mohamed Ahmed AHA, Sharma G, et al. Principles of pharmacology in the eye. Br J Pharmacol. 2017;174(23):4205-4223. doi: 10.1111/bph.14024 </ol> <p>
Volume 2, Issue 4, 2025
Page : 69-74
_Footer