1. Choi EH, Suh S, Sears AE, et al. Genome editing in the treatment of ocular diseases. Exp Mol Med. 2023;55(8):1678-1690. doi:10.1038/s12276-023-01057-2
2. Suh S, Choi EH, Raguram A, Liu DR, Palczewski K. Precision genome editing in the eye. Proc Natl Acad Sci. 2022;119(39):e2210104119. doi:10. 1073/pnas.2210104119
3. Tang R, Xu Z. Gene therapy: a double-edged sword with great powers. Mol Cell Biochem. 2020;474(1-2):73-81. doi:10.1007/s11010-020-03834-3
4. Berkowitz ST, Finn AP. Gene therapy for age-related macular degeneration: potential, feasibility, and pitfalls. Curr Opin Ophthalmol. 2024;35(3):170-177. doi:10.1097/ICU.0000000000001043
5. Li B, Tan W, Wang Z, et al. Progress and prospects of gene therapy in ophthalmology from 2000 to 2022: a bibliometric analysis. Heliyon. 2023;9(7):e18228. doi:10.1016/j.heliyon.2023.e18228
6. Hu ML, Edwards TL, O’Hare F, et al. Gene therapy for inherited retinal diseases: progress and possibilities. Clin Exp Optom. 2021;104(4):444-454. doi:10.1080/08164622.2021.1880863
7. Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res. 2023;93:101170. doi:10.1016/j.preteyeres.2023.101170
8. Sudhakar V, Richardson RM. Gene therapy for neurodegenerative diseases. Neurotherapeutics. 2019;16(1):166-175. doi:10.1007/s13311-018-00694-0
9. Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent advances in gene therapy for cardiac tissue regeneration. Int J Mol Sci. 2021;22(17):9206. doi:10.3390/ijms22179206
10. Sinim Kahraman N, Öner A, Özkul Y, Dündar M. Frequency of RPE65 gene mutation in patients with hereditary retinal dystrophy. Turk J Ophthalmol. 2022;52(4):270-275. doi:10.4274/tjo.galenos.2021.74944
11. Sahu B, Chug I, Khanna H. The ocular gene delivery landscape. Biomolecules. 2021;11(8):1135. doi:10.3390/biom11081135
12. Ghoraba HH, Akhavanrezayat A, Karaca I, et al. Ocular gene therapy: a literature review with special focus on immune and inflammatory responses. Clin Ophthalmol. 2022;16:1753-1771. doi:10.2147/OPTH.S364200
13. Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25(2):229-233. doi:10.1038/s41591-018-0327-9
14. Drag S, Dotiwala F, Upadhyay AK. Gene Therapy for retinal degenerative diseases: progress, challenges, and future directions. Investig Opthalmology Vis Sci. 2023;64(7):39. doi:10.1167/iovs.64.7.39
15. Zhi S, Chen Y, Wu G, et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Ther. 2022;30(1):283-294. doi:10. 1016/j.ymthe.2021.07.011
16. Öner A. Recent advancements in gene therapy for hereditary retinal dystrophies. Turk Oftalmol Derg. 2017;47(6):338-343. doi:10.4274/tjo. 41017
17. Altay HY, Ozdemir F, Afghah F, et al. Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: from proof-of-concept to clinical trial. Front Neurosci. 2022;16:924917. doi:10.3389/fnins.2022.924917
18. Maguire AM, Russell S, Chung DC, et al. Durability of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease. Ophthalmology. 2021;128(10):1460-1468. doi:10.1016/j.ophtha.2021.03. 031
19. Reichel FF, Seitz I, Wozar F, et al. Development of retinal atrophy after subretinal gene therapy with voretigene neparvovec. Br J Ophthalmol. 2023;107(9):1331-1335. doi:10.1136/bjophthalmol-2021-321023
20. Lorenz B, Künzel SH, Preising MN, et al. Single center experience with voretigene neparvovec gene augmentation therapy in RPE65 mutation-associated ınherited retinal degeneration in a clinical setting. Ophthalmology. 2024;131(2):161-178. doi:10.1016/j.ophtha.2023.09.006
21. Daruich A, Rateaux M, Batté E, et al. 12-month outcomes after voretigene neparvovec gene therapy in paediatric patients with RPE65 -mediated inherited retinal dystrophy. Br J Ophthalmol. 2025;109(2):281-285. doi: 10.1136/bjo-2024-326221
22. Fischer MD, Simonelli F, Sahni J, et al. Real-world safety and effectiveness of voretigene neparvovec: results up to 2 years from the prospective, registry-based PERCEIVE study. Biomolecules. 2024;14(1): 122. doi:10.3390/biom14010122
23. Yang P, Pardon LP, Ho AC, et al. Safety and efficacy of ATSN-101 in patients with Leber congenital amaurosis caused by biallelic mutations in GUCY2D: a phase 1/2, multicentre, open-label, unilateral dose escalation study. Lancet. 2024;404(10456):962-970. doi:10.1016/S0140-6736(24)01447-8
24. Audo I, Barale PO, Devisme C, et al. Voretigene neparvovec in RPE65-related inherited retinal dystrophy: the 1-year real-world study LIGHT. Eye. 2025;39(9):1758-1764. doi:10.1038/s41433-025-03691-8
25. Oliveira AV, Rosa Da Costa AM, Silva GA. Non-viral strategies for ocular gene delivery. Mater Sci Eng C. 2017;77:1275-1289. doi:10.1016/j.msec.2017.04.068
26. Zhu G, Chen X. Aptamer-based targeted therapy. Adv Drug Deliv Rev. 2018;134:65-78. doi:10.1016/j.addr.2018.08.005
27. Nimjee SM, White RR, Becker RC, Sullenger BA. Aptamers as therapeutics. Annu Rev Pharmacol Toxicol. 2017;57(1):61-79. doi:10.1146/annurev-pharmtox-010716-104558
28. Xue K, MacLaren RE. Antisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases. Expert Opin Investig Drugs. 2020;29(10):1163-1170. doi:10.1080/13543784.2020.1804853
29. Bacchi N, Casarosa S, Denti MA. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter. Investig Opthalmology Vis Sci. 2014;55(5):3285. doi:10.1167/iovs.14-14544
30. Collin RWJ, Garanto A. Applications of antisense oligonucleotides for the treatment of inherited retinal diseases. Curr Opin Ophthalmol. 2017;28(3):260-266. doi:10.1097/ICU.0000000000000363
31. Girach A, Audo I, Birch DG, et al. RNA-based therapies in inherited retinal diseases. Ther Adv Ophthalmol. 2022;14:25158414221134602. doi:10.1177/25158414221134602
32. Dulla K, Slijkerman R, Van Diepen HC, et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol Ther. 2021;29(8):2441-2455. doi:10.1016/j.ymthe.2021.04. 024
33. Kuijper EC, Bergsma AJ, Pijnappel WWMP, Aartsma-Rus A. Opportunities and challenges for antisense oligonucleotide therapies. J Inherit Metab Dis. 2021;44(1):72-87. doi:10.1002/jimd.12251
34. Hutcherson SL LR. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with aids. Am J Ophthalmol. 2002; 133(4):467-474. doi:10.1016/S0002-9394(02)01327-2
35. Kumar S, Fry LE, Wang JH, et al. RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res. 2023;92:101110. doi:10.1016/j.preteyeres.2022.101110
36. Gérard X, Perrault I, Munnich A, Kaplan J, Rozet JM. Intravitreal injection of splice-switching oligonucleotides to manipulate splicing in retinal cells. Mol Ther Nucleic Acids. 2015;4:e250. doi:10.1038/mtna. 2015.24
37. Cideciyan AV, Jacobson SG, Drack AV, et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med. 2019;25(2):225-228. doi:10. 1038/s41591-018-0295-0
38. Slijkerman R, Van Diepen H, Albert S, et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by mutations in USH2A exon 13. 2020:10. doi:10.1101/2020.10.06.320499
39. Russell SR, Drack AV, Cideciyan AV, et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nat Med. 2022;28(5):1014-1021. doi:10.1038/s41591-022-01755-w
40. Jo DH, Song DW, Cho CS, et al. CRISPR-Cas9-mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis. Sci Adv. 2019;5(10):eaax1210. doi:10.1126/sciadv.aax1210
41. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849-860. doi:10.1016/S0140-6736 (17)31868-8
42. Verbakel SK, Van Huet RAC, Boon CJF, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157-186. doi:10.1016/j.preteyeres.2018.03.005
43. Liu Y, Zong X, Cao W, Zhang W, Zhang N, Yang N. Gene therapy for retinitis pigmentosa: current challenges and new progress. Biomolecules. 2024;14(8):903. doi:10.3390/biom14080903
44. Parnami K, Bhattacharyya A. Current approaches to vision restoration using optogenetic therapy. Front Cell Neurosci. 2023;17:1236826. doi:10. 3389/fncel.2023.1236826
45. Nakazawa M, Hara A, Ishiguro S. Optical coherence tomography of animal models of retinitis pigmentosa: from animal studies to clinical applications. BioMed Res Int. 2019;2019:1-16. doi:10.1155/2019/8276140
46. Bakondi B, Lv W, Lu B, et al. In Vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 Rat model of autosomal dominant retinitis pigmentosa. Mol Ther. 2016;24(3):556-563. doi:10.1038/mt.2015. 220
47. Giannelli SG, Luoni M, Castoldi V, et al. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet. 2018;27(5): 761-779. doi:10.1093/hmg/ddx438
48. Cai Y, Cheng T, Yao Y, et al. In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway. Sci Adv. 2019;5(4):eaav3335. doi:10.1126/sciadv.aav3335
49. Qin H, Zhang W, Zhang S, et al. Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J Exp Med. 2023;220(5): e20220776. doi:10.1084/jem.20220776
50. Gumerson JD, Alsufyani A, Yu W, et al. Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing. Gene Ther. 2022;29(1-2):81-93. doi:10.1038/s41434-021-00258-6
51. Piotter E, McClements ME, MacLaren RE. Therapy approaches for Stargardt disease. Biomolecules. 2021;11(8):1179. doi:10.3390/biom1108 1179
52. Al-Khuzaei S, Broadgate S, Foster CR, et al. An overview of the genetics of ABCA4 retinopathies, an evolving story. Genes. 2021;12(8):1241. doi: 10.3390/genes12081241
53. Sangermano R, Khan M, Cornelis SS, et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018;28(1):100-110. doi:10.1101/gr. 226621.117
54. De Angeli P, Reuter P, Hauser S, et al. Effective splicing restoration of a deep-intronic ABCA4 variant in cone photoreceptor precursor cells by CRISPR/SpCas9 approaches. Mol Ther Nucleic Acids. 2022;29:511-524. doi:10.1016/j.omtn.2022.07.023
55. Huang D, Thompson JA, Chen SC, et al. Characterising splicing defects of ABCA4 variants within exons 13-50 in patient-derived fibroblasts. Exp Eye Res. 2022;225:109276. doi:10.1016/j.exer.2022.109276
56. Kaltak M, Blanco-Garavito R, Molday LL, et al. Stargardt disease-associated in-frame ABCA4 exon 17 skipping results in significant ABCA4 function. J Transl Med. 2023;21(1):546. doi:10.1186/s12967-023-04406-x
57. Kaltak M, De Bruijn P, Piccolo D, et al. Antisense oligonucleotide therapy corrects splicing in the common Stargardt disease type 1-causing variant ABCA4 c.5461-10T>C. Mol Ther Nucleic Acids. 2023;31:674-688. doi:10.1016/j.omtn.2023.02.020
58. Kaltak M, De Bruijn P, Van Leeuwen W, et al. QR-1011 restores defective ABCA4 splicing caused by multiple severe ABCA4 variants underlying Stargardt disease. Sci Rep. 2024;14(1):684. doi:10.1038/s41598-024-51203-7
59. Li R, Jing Q, She K, et al. Split AAV8 mediated ABCA4 expression for gene therapy of mouse Stargardt disease (STGD1). Hum Gene Ther. 2023;34(13-14):616-628. doi:10.1089/hum.2023.017
60. Gabrielczyk T. SpliceBio lauches Phase I/II study on dual-AAV-based therapy for Stargardt Disease. Accessed March 20, 2025. https://european-biotechnology.com/latest-news/splicebio-lauches-phase-i-ii-study-on-dual-aav-based-therapy-for-stargardt-disease/#top
61. Shiels A, Hejtmancik JF. Inherited cataracts: genetic mechanisms and pathways new and old. Exp Eye Res. 2021;209:108662. doi:10.1016/j.exer.2021.108662
62. Ahmad R, Bell S, Moosajee M. Genetics of congenital cataract. Adv Ophthalmol Optom. 2022;7(1):89-118. doi:10.1016/j.yaoo.2022.03.004
63. Malecaze F, Lubsen NH, Serre B, et al. Lens cell targetting for gene therapy of prevention of posterior capsule opacification. Gene Ther. 2006;13(19):1422-1429. doi:10.1038/sj.gt.3302790
64. Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature. 2016;531(7594):323-328. doi:10.1038/nature17181
65. Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013;13(6):659-662. doi:10.1016/ j.stem.2013.10.016
66. Wu Y, Zhou H, Fan X, et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 2015;25(1):67-79. doi:10.1038/cr.2014.160
67. Yuan L, Sui T, Chen M, et al. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci Rep. 2016;6(1): 22024. doi:10.1038/srep22024
68. Yuan L, Yao H, Xu Y, et al. CRISPR/Cas9-Mediated Mutation of ?A-Crystallin gene induces congenital cataracts in rabbits. Investig Opthalmology Vis Sci. 2017;58(6):BIO34. doi:10.1167/iovs.16-21287
69. Zhao D, Jones JL, Gasperini RJ, Charlesworth JC, Liu GS, Burdon KP. Rapid and efficient cataract gene evaluation in F0 zebrafish using CRISPR-Cas9 ribonucleoprotein complexes. Methods. 2021;194:37-47. doi:10.1016/j.ymeth.2020.12.004
70. Jiang J, Zhang X, Tang Y, Li S, Chen J. Progress on ocular siRNA gene-silencing therapy and drug delivery systems. Fundam Clin Pharmacol. 2021;35(1):4-24. doi:10.1111/fcp.12561
71. Wu KY, Fujioka JK, Gholamian T, Zaharia M, Tran SD. Suprachoroidal injection: a novel approach for targeted drug delivery. Pharmaceuticals. 2023;16(9):1241. doi:10.3390/ph16091241
72. Huang P, Narendran S, Pereira F, et al. The learning curve of murine subretinal injection among clinically trained ophthalmic surgeons. Transl Vis Sci Technol. 2022;11(3):13. doi:10.1167/tvst.11.3.13
73. Awwad S, Mohamed Ahmed AHA, Sharma G, et al. Principles of pharmacology in the eye. Br J Pharmacol. 2017;174(23):4205-4223. doi: 10.1111/bph.14024
</ol>
<p>