AOR

The Archives of Ophthalmological Research aims to publish issues related to publish articles of the highest scientific and clinical value at an international level, and accepts articles on these topics. The target audience of the journal included specialists and physicians working in ophthalmology, and other health professionals interested in these fields.

EndNote Style
Index
Original Article
Impact of phacoemulsification on choroidal and ganglion cell complex thickness assessed by spectral-domain optical coherence tomography
Aims: To investigate the effects of phacoemulsification on subfoveal choroidal thickness (SFCT) and ganglion cell complex thickness (GCCT), using spectral-domain optical coherence tomography (SD-OCT).
Methods: This retrospective study included 40 eyes of 40 patients who underwent phacoemulsification with intraocular lens implantation for senile cataract. Preoperative examinations included best-corrected visual acuity (BCVA), slit-lamp biomicroscopy, intraocular pressure (IOP), central corneal thickness (CCT), and axial length (AL). Operative time (OT) and effective phaco time (EPT) were recorded. SFCT, GCCT, central macular thickness (CMT), and peripapillary retinal nerve fiber layer thickness (pRNFLT) were measured preoperatively and at 1 month using SD-OCT.
Results: At one month postoperatively, all parameters showed statistically significant increases (p<0.001): SFCT (298.6±41.3 µm to 304.6±40.8 µm), GCCT (83.2±4.4 µm to 91.4±6.1 µm), CMT (244.6±16.6 µm to 248.3±17.4 µm), and pRNFLT (95.3±5.1 µm to 100.9±5.8 µm). No significant associations were found between changes in SFCT or GCCT and demographic or clinical factors.
Conclusion: Phacoemulsification may induce mild inflammatory changes that affect posterior segment structures, even in uneventful cases. SFCT, GCCT, CMT, and pRNFLT should therefore be re-evaluated postoperatively to establish new baselines for accurate monitoring. Larger, long-term studies are warranted to clarify the clinical relevance of these changes.


1. Campos A, Campos EJ, Martins J, Ambrósio AF, Silva R. Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema. Acta Ophthalmol. 2017;95(5): 446-459. doi:10.1111/aos.13210
2. Gomi F, Tano Y. Polypoidal choroidal vasculopathy and treatments. Curr Opin Ophthalmol. 2008;19:208-212. doi:10.1097/ICU.0b013e3282fb7c33
3. Cheung CMG, Lai TYY, Teo KYC, et al. Macular neovascularization and polypoidal choroidal vasculopathy: phenotypic variations, pathogenic mechanisms and implications in management. Eye (Lond). 2024;38:659-667. doi:10.1038/s41433-023-02764-w
4. Sato Kuroda K, Ikuno Y, Yasuno Y, et al. Choroidal thickness in central serous chorioretinopathy. Retina. 2013;33(2):302-308. doi:10.1097/IAE. 0b013e318263d11f
5. Tuncer I, Karahan E, Zengin MO, Atalay E, Polat N. Choroidal thickness in relation to sex, age, refractive error, and axial length in healthy Turkish subjects. Int Ophthalmol. 2015;35(3):403-410. doi:10.1007/s10792-014-9962-4
6. Zhu H, Liu C, Gao M, et al. Choroidal thickness in relation to diopter and axial length among myopic children. Front Med. 2023;10:1241352. doi:10.3389/fmed.2023.1241352.
7. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4): 496-500. doi:10.1016/j.ajo.2008.05.032
8. Abdelghany AA, Sallam MA, Ellabban AA. Assessment of ganglion cell complex and peripapillary retinal nerve fiber layer changes following cataract surgery in patients with pseudoexfoliation glaucoma. J Ophthalmol. 2019;2019:8162825. doi:10.1155/2019/8162825
9. Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Effect of cataract and its removal on ganglion cell complex thickness and peripapillary RNFL thickness by Fourier-domain OCT. J Glaucoma. 2013;22(6):447-455. doi:10.1097/IJG.0b013e3182478ac3
10. Lobo C. Pseudophakic cystoid macular edema. Ophthalmologica. 2012; 227(2):61-67. doi:10.1159/000331277
11. Hayashi K, Igarashi C, Hirata A, Hayashi H. Changes in diabetic macular oedema after phacoemulsification surgery. Eye (Lond). 2009;23:389-396. doi:10.1038/sj.eye.6703022
12. Kim H, Kang JW, Chung H, Kim HC. Morphologic changes in retinal layers after uncomplicated phacoemulsification: a swept-source optical coherence tomography study. Sci Rep. 2021;11:19927. doi:10.1038/s41598-021-99440-4
13. Georgopoulos GT, Papaconstantinou D, Niskopoulou M, Moschos M, Georgalas I, Koutsandrea C. Foveal thickness after phacoemulsification as measured by optical coherence tomography. Clin Ophthalmol. 2008;2: 817-820. doi:10.2147/opth.s4031
14. Jiang H, Li Z, Sun R, Liu D, Liu N. Subfoveal choroidal and macular thickness changes after phacoemulsification using enhanced depth imaging optical coherence tomography. Ophthalmic Res. 2018;60(4):243-249. doi:10.1159/000480240
15. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4): 496-500. doi:10.1016/j.ajo.2008.05.032
16. Falcão MS, Gonçalves NM, Freitas-Costa P, et al. Choroidal and macular thickness changes induced by cataract surgery. Clin Ophthalmol. 2013;8:55-60. doi:10.2147/OPTH.S53989
17. Aslan Bayhan S, Bayhan HA, Muhafiz E, Kirboga K, Gurdal C. Evaluation of choroidal thickness changes after phacoemulsification surgery. Clin Ophthalmol. 2016;10:961-967. doi:10.2147/OPTH.S94096
18. Pierru A, Carles M, Gastaud P, Baillif S. Measurement of subfoveal choroidal thickness after cataract surgery in enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(8): 4967-4974. doi:10.1167/iovs.14-14172
19. Sheppard JD. Topical bromfenac for prevention and treatment of cystoid macular edema following cataract surgery: a review. Clin Ophthalmol. 2016;10:2099-2111. doi:10.2147/OPTH.S86971
20. Xu H, Chen M, Forrester JV, Lois N. Cataract surgery induces retinal pro-inflammatory gene expression and protein secretion. Invest Ophthalmol Vis Sci. 2011;52(1):249-255. doi:10.1167/iovs.10-6001
21. Ibrahim AM, Elgouhary SM, Nassar MK, El Batanony AH. Changes in choroidal thickness after cataract surgery. Semin Ophthalmol. 2018; 33(5):664-670. doi:10.1080/08820538.2017.1416410
22. Yilmaz T, Karci AA, Yilmaz I, Yilmaz A, Yildirim Y, Sakalar YB. Long-term changes in subfoveal choroidal thickness after cataract surgery. Med Sci Monit. 2016;22:1566-1571. doi:10.12659/msm.898714
23. Icoz M. Evaluation of structural and vascular changes in the choroid after uneventful phacoemulsification surgery. Rom J Ophthalmol. 2023; 67(1):50-56. doi:10.22336/rjo.2023.9
24. Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(11):8323-8329.
25. Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51(9):4646-4651.
26. Seong M, Sung KR, Choi EH, et al. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010;51(3):1446-1452.
27. Roh HC, Park CY, Kim M. Changes of the macular ganglion cell-inner plexiform layer thickness after cataract surgery in glaucoma patients. J Ophthalmol. 2016;2016:9785939. doi:10.1155/2016/9785939
28. Sari ES, Ermis SS, Yazici A, Koytak A, Sahin G, Kilic A. The effect of intracameral anesthesia on macular thickness and ganglion cell-inner plexiform layer thickness after uneventful phacoemulsification surgery: prospective and randomized controlled trial. Graefes Arch Clin Exp Ophthalmol. 2014;252(3):433-439. doi:10.1007/s00417-013-2557-3
29. Zhou Y, Zhou M, Wang Y, et al. Short-term changes in retinal vasculature and layer thickness after phacoemulsification surgery. Curr Eye Res. 2020;45(1):31-37. doi:10.1080/02713683.2019.1649703
30. Sánchez-Sánchez C, Rementería-Capelo LA, Carrillo V, Pérez-Lanzac J, Contreras I. Changes in ganglion cell complex and peripapillary retinal nerve fiber layer after femtosecond laser-assisted cataract surgery compared to manual phacoemulsification in patients receiving a trifocal intraocular lens. J Ophthalmol. 2020;2020:8626495. doi:10.1155/2020/ 8626495
31. Mojzis P, Studeny P, Penkova L. Macular thickness after uneventful cataract surgery determined by optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2007;245(12):1765-1771. doi:10.1007/s00417-007-0605-6
32. Guliani BP, Agarwal I, Naik MP. Effect of uncomplicated cataract surgery on central macular thickness in diabetic and non-diabetic subjects. J Ophthalmic Vis Res. 2019;14(4):442-447. doi:10.18502/jovr.v14i4.5447
33. Perente I, Utine CA, Ozturker C, et al. Evaluation of macular changes after uncomplicated phacoemulsification surgery by optical coherence tomography. Curr Eye Res. 2007;32(3):241-247. doi:10.1080/ 02713680601160610
34. Akbulut S, Pekel G. Effects of uncomplicated phacoemulsification surgery on retinal vascular diameters, subfoveal choroidal and central macular thickness. Int Ophthalmol. 2025;45(1):262. doi:10.1007/s10792-025-03638-8
35. Großpötzl M, Malle EM, Riedl M, et al. Changes of individual retinal layer thickness post-uneventful cataract surgery determined by spectral-domain optical coherence tomography over a 3-months period. Heliyon. 2024;10(15):e35096. doi:10.1016/j.heliyon.2024.e35096 </ol> <p>
Volume 2, Issue 4, 2025
Page : 58-62
_Footer